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We study the asymptotic behavior of the charge fluctuations ((QA - 
(QA)) 2) in infinite classical systems of charged particles, and show, under 
certain clustering assumptions, that if the charge fluctuations are not exten- 
sive, then they are necessarily of the order of the surface lOAf. Moreover, 
when the canonical sum rules that are typical for equilibrium states of 
particles interacting with long-range forces hold true, we prove a central 
limit theorem for the normalized charge variable laAI-I~2(QA - (QA)) in 
two and three dimensions. In one dimension, the probability distribution of 
the charge itself converges. The latter case is illustrated by the example of the 
one-dimensional Coulomb gas. 
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fluctuations; canonical sum rules; central limit theorem; one-dimensional 
Coulomb gas. 

1. I N T R O D U C T I O N  

Gibbs states o f  classical systems of  particles interacting with long-range forces 
(in particular, Cou lomb systems) have specific properties which are not  
present in equilibrium states o f  particles interacting with short-range forces. 
At  a very heuristic level, the reason for  the occurrence o f  these new properties 
in Cou lomb systems can be unders tood with the help of  the following 
argument  based on Gauss '  law. Let us consider the total charge QA carried 
by the particles located in some region A;  QA is related to the electric field 
E(x)  in the system by Gauss '  law QA = f~AE(x)" ds. We divide the surface 

~A of  A into N ceils A~, n = 1,..., N of  size IA~I = oJ, i.e., [~A I = Nw. 
Then we have approximately f~,~E(x), ds = oJ~,ff= 1E,, where E ,  is the projec- 
t ion o f  the electric field in the direction normal  to the surface of  the cell 
A,. I f  the average electric field in the system is zero, ( E , )  = 0, the system is 
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also locally neutral: (QA) = c~ = O. If we assume, moreover, that 
the electric field random variables E.  are approximately statistically indepen- 
dent, we can apply the law of large numbers to conclude that the charge 
fluctuations behave as IA] - .  oo like 

N 

<(QA - <QA))2> = <QA2> ~- co2 ~ <E.Em> ~- N ~- leA[ 
n , m = l  

Thus the charge fluctuations, being of the order of the surface, are not 
extensive with A, as would be the case for the fluctuations of usual macro- 
scopic quantities (outside of critical points). Clearly this fact has far-reaching 
consequences on the structure of Gibbs states, and the purpose of this paper 
is to study the properties of equilibrium states of charged particles in the case 
where the charge fluctuations are not extensive. 

This work completes and extends results given in Ref. 1. It is deduced in 
Ref. 1 from suitably defined equilibrium equations that equilibrium states of 
infinite systems of particles interacting with long-range forces must possess 
new characteristic properties, provided that the state has an integrable cluster- 
ing. Among these properties the most important are the neutrality and the 
hierarchy of canonical sum rules, the latter implying the nonextensivity of the 
charge fluctuations (see Ref. 1, Sections 4 and 5). In this work, the relation 
between the charge fluctuations and these canonical sum rules is further 
investigated, and a solvable model, the one-dimensional Coulomb gas, 
exhibiting all the features of the general theory is given as an illustration. 

As in Ref. 1, we will always assume that we are given an equilibrium 
state of the infinitely extended system. The charge fluctuations are then those 
of the total charge of finite regions in this infinite system. We do not consider 
here the problem of constructing such infinite states by means of thermo- 
dynamic limits of finite-volume Gibbs states, nor do we study global charge 
fluctuations including charges at the boundary of the system. We include in 
our treatment both translation-invariant states and possible periodic states 
that are only invariant under some discrete subgroup of the translations. 
Furthermore, we emphasize that this analysis is not limited to the strict 
Coulomb force, but applies to all classical systems of charged particles having 
the features specific to long-range forces discussed in Ref. 1. 

In Section 3 we establish under certain mild clustering assumptions that 
if the charge fluctuations are not extensive, they must be of the order of the 
surface. It is interesting to note that this result does not depend on the 
explicit form of the interparticle forces (contrary to the argument involving 
the Gauss law), but appears here as a general geometrical fact in the formalism 
of statistical mechanics. We study in Section 4 the implications of the 
canonical sum rules for the asymptotic behavior of the full probability distri- 
bution of the charge. The first sum rule with slightly stronger clustering 
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assumptions than integrability implies the surface behavior of the charge 
fluctuations. Moreover, in three or two space dimensions, higher order sum 
rules together with similar clustering assumptions enable us to prove a central 
limit theorem for the properly normalized charge observable I~AI-~/2(Q A - 
(QA)). In one space dimension, the charge QA itself has a limiting distribution 
as IAI -+ oe. Since the sum rules are expected to hold in Coulomb systems as 
soon as screening occurs (see Ref. 1, Section 5), all the features of charge 
fluctuations will be true in such systems (with the possible exception of 
critical values of thermodynamic parameters). This is in fact the main point 
in this paper. 

We reexamine briefly in Section 5 the one-dimensional Coulomb gas that 
has been treated by Edwards and Lenard, (~ with the purpose of illustrating 
the preceding results by an explicit example. In this respect, we supplement the 
work of Ref. 2 on two points: the existence of a limiting charge distribution 
and the validity of the sum rules. 

Finally, we add that Lieb and Lebowitz have conjectured in their proof  
of the thermodynamic limit of the quantum Coulomb system that the charge 
fluctuations should also be nonextensive in the quantum case. (3~ The study of 
the quantum charge fluctuations will be the subject of subsequent investiga- 
tions. 

2. GENERAL SETTING A N D  N O T A T I O N S  

We consider a classical system of N kinds of particles with charges 
~r ~ Z, where Y~ is a finite subset of R. We denote the charge ~r and the position 
x of a particle by q = ( ~ , x ) ,  o ~ Z ,  x = { x ~ ,  c~= 1, . . . ,v}~R ~, and we 
write 

fAdq=fAdX ,o A cRY 

The state p of  the system is given in terms of its correlation functions 
p("~(ql . . . .  , q , )  = p('~(xl~rl ;...; x,a~) = p~'~]...~,(xl,..., x , ) .  These correlation func- 
tions are understood to describe an equilibrium state of the infinitely ex- 
tended system (i.e., they are obtained as thermodynamic limits of those of 
finite Gibbs states, or as solutions of appropriate equilibrium equations (1~). 
A will always denote a finite region of this infinite system. The p("~(ql . . . . .  q , )  
are positive and symmetric under the permutations of the arguments ql .... , 
q,. Moreover, we shall assume throughout this paper that as functions of 
xl,..., x,,  they are continuous and bounded in R "~. 

We will be interested in two types of equilibrium states, the translation- 
invariant states (RMnvariant states) and the nontrivially periodic states, 
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invariat~t under a discrete subgroup ~'- of the group of translations (9-- 
invariant states). For an R~-invariant state we write simply the two-point 
functions as p(2)(a~xa" ~2x2) = ~2) (x - x2). t'fflff2\ I 

We characterize a discrete subgroup J -  of the translations by v funda- 
mental vectors e~, a = 1,..., v, i.e., 

o ~'= (a~,an= 6=1 ~ n~e~, n ~ Z ,  a :  1 ..... v} 

and we denote by f2 the fundamental cell based on the vectors e~. For a ~-- 
invariant state, we have 

p(~C) r .  
ax...a~kZl + an , . . . ,  x k  + an)  = ~(k) ,'. laal...ae~..,~l,..., Xlc) 

for all an in J- .  
The total charge of the particles with coordinates and charges qj = (xj~j) 

located in the finite region A is the observable 

Qa = E aJXa(xJ) (1) 
i 

with 

XA(X)=(10 X~Ax~A 

We denote by (QA) the average charge of the region A (in the state p of the 
infinitely extended system) and by (QAn), n -- 2, 3 ..... the higher moments 
of the probability distribution of the charge in A. In particular (QA) and 
(QA 2) are expressed in terms of the one- and two-point correlation functions 
by 

(QA> = ~ fA aP~l)(x) dx (2) 

= dxl fA dx2 ~1o2,~(2) rXl, x2) + ~ fA dx a~P~l)(x) (3) 

We denote by ]A[ (resp. [SA[) the volume (resp. the surface) of a finite region 
A (resp. of its boundary 8A). If  there is an underlying lattice ~,, we set 
[A] = ~,j~srxa(aj), the number of lattice points in A. Clearly [A[ differs from 
]f~[ [A] by the volume of cells intersecting 8A. 

If d is the maximal diameter of D, we have in any case 

I IAi -  [~I[A]I < IAa[ (4) 
where A a is the set of points within a distance less than or equal to d to 8A. 

In order to investigate the behavior of the probability distribution of the 
charge for large A, we specify in what sense sequences of the region A con- 
verge to R v. 
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We assume always that A--~ R ~ in the sense of van Hove [i.e., limA.R~ 
(]Ah[/[A D = 0, where A h is the set of points that are within a distance less 
than or equal to h to OA]. In particular we shall consider sequences 

A~ = Aho = {,~x[x e h0}, ~, > 0 (5) 

that are dilatations of a fixed region A0, where the boundary OAo of Ao is 
supposed to be a piecewise differentiable manifold. 

In connection with 3-'-invariant states, we introduce the union of cells 
~) (invariant under space inversion) 

and the sequence of regions A k that are the union of cells obtained as dilata- 
tions of ~), 

:t~ = {x[x  = ky, y E ~}, k = 1, 2 . _  (6) 

3. A S Y M P T O T I C  B E H A V I O R  OF THE C H A R G E  
F L U C T U A T I O N S  

In this section, we examine the asymptotic behavior of charge fluctu- 
ations ((QA - <QA)) 2) = <Qa 2) - (Qa) 2 as A -+ R v. We show that if the 
charge fluctuations are not extensive with A, then, under certain clustering 
assumptions, they are necessarily of the order of 10AI. This is the content of 
Propositions 1 and 2 below. In Proposition 1, we derive an integral relation 
between the one-point and the two-point correlation functions [Eqs. (8) and 
(9)] which has to hold when the charge fluctuations are not extensive. On the 
basis of this relation and of a geometrical lemma, we establish in Proposition 2 
that ((Qa - (Qa) )  2) behaves as I al, A -- ,  R v. 

By the very definition of the correlation functions, we get from (2) and 
(3) 

= fA dx Z cr2p(1)(crx) - fA dxl fa dx2f(xl ,  x2) (7) 

where we have set for brevity 

f (x l ,  x2) = - ~ ai"2p(r2)(~ixi ; a2x2) (8) 
fflO'2 

and p~)(alxl ; ~2x2) is the two-point truncated correlation function defined in 
the usual way. 
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Proposition 1. (i) Let p be an RV-invariant state with s162 clustering 
two-point functions 

f lp?2~(x)l dx < oo  

and A a sequence of regions converging to R ~ in the sense of van Hove. Then 
lima-.~,[((QA - %O~>)~>/IAI] = 0 if and only if 

(72p(~ x, = f dx f ( x )  (9) 
ff 

(ii) Let p be a 3"--invariant state with ~fl clustering two-point function 

sup ([p?)(.~x~; ,,~x2)[ dx2 < 0o 
x z  J 

and Ak the sequence of regions defined in (6). Then 

lim ((QA~ - (QA~)) 2) = 0 

if and only if 

r (1) x 

Proposition 2. (i) Let p be an RMnvariant state with 

f lpNl~=(x)[ lxl dx < oo 

and Aa = AAo a sequence of dilated regions (5). If  

lim ((QA^ - (QA^))  2) = 0 
^^-'." [&,l 

then 

lira ((QA^ - (Qa~))2) 

where ~,(y) is defined in Lemma 1(a2). 

= f f ( y ) y ( y )  dy - d 

(ii) Let p be a J ' - invariant  state with 

sup~ ip~)(~ix; -2y)l IY[ dy < oo 

and A k the sequence of regions (6). If  

lim ((QAk -- (QA~))2) = 0 

(10) 

(11) 
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then 

lim lfa f A~-., leAkl = ~-T ax dyf(x,  y)~(y) - d (12) 

where y(y) is defined in Lemma 1 (/~2). (Proposition 2 holds in one dimension 
with [0A[ = 1.) 

The proofs of Propositions 1 and 2 depend on the following lemma, 
which is of a purely geometrical nature. For any finite region A and y e R v, 
we define 

~A(Y) = I A t~ (R~\A - y)[ (13) 

and in the case where we have an underlying lattice ~,, 

~ ( y )  = lal[A n (Rv\A - y)] (14) 

(A + y) = {x + y Ix G A} is the translate of A. 

I . emma 1. (~:) If  A - .  R ~ in the sense of van Hove, then 

1 
lim ~'A(Y) = 0 

A - ~ R  v 

(c~2) If  A is a sequence of dilated regions (5), then 

Y (Y) = 2-(7 o1 Ao 

Let Ak be the sequence of regions (6); then 

1 
(/~:) lira ~ak(Y) = 0 

A / c ~ R  v 

(,/32) lira 1 ]]~]] ~ A~R" ~ ~A~(y) = [[y.[] = ~ ( y )  (16) 

where y ,  are the components of the vector y in the (not necessarily ortho- 
normal) basis formed by the e~, ~ = 1 .... , v (i.e., y = ~=ly , e , ) ,  and [a] is 
the integer part of a. 

The lemma is proved in the Appendix. 

Remarks. 1. Coulomb systems have to be locally neutral, i.e., (QA) = 0 
(see Ref. 1, Section 4). However, neutrality has not been assumed in Proposi- 
tions 1 and 2. 

2. We see that under the conditions of Propositions 1 and 2, the integrals 
(9) and (10) involvingf(x) have to be positive, and the integrals (11) and (12) 
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have to be nonnegative. This is a screening effect. Indeed we get from (8) for 
an R~-invariant neutral state (i.e., ~oap~ = 0) 

: GiGlP~lal(Xl -- X2) 
GI,G 2 GI,G2 

GIG2<O 0"10-2>0 

Positivity conditions onf(x l ,  x2) indicate that in the neighborhood of a given 
charge, it is more likely to find charges &the  opposite sign than charges of the 
same sign. It is even expected (and proven in certain models (2)) that f (xl ,  x2) 
is pointwise positive. If  this is so, d and d in (11) and (12) are strictly positive. 
In any case, we shall assume in the rest of the paper that d and d are strictly 
positive, so that the charge fluctuations do not grow more slowly than [gAl. 

3. Proposition 1 holds under the assumption o f ~  ~ clustering. However, 
in Proposition 2, a stronger clustering condition is needed, i.e., 
[x2ip~2~(crlxl; ~2x2)~qPl(dx2). There might exist a critical temperature for 
which the latter condition is violated, leading to charge fluctuations of larger 
order than [0A I (although not extensive). 

4 .  In the case of a translation- and rotation-invariant state, and under 
the conditions of Proposition 2(i), we have 

<(QAA -- <QAa>)2> [ 
Aa-+R~lim laA~ I = c~_ ]ylf(y) dy 

t 
l, v = 1 

Cv = lfir, v = 2 
LlI4, v = 3 

the limit being independent of the shape of the sequence of regions Ax. 
Indeed by the invariance o f f ( y )  under rotations, we can replace ~,(y) in (11) 
by its average over rotations R and we find with (15) 

fr(Ry) d~(R) 
fd~(R) - C~lYl 

Proof of Proposition 7. (i) If p is translation invariant, the second term of 
(7) can be written as 

1 dxfA -- x) [A[ fA dyf(y 

1 ( d x f  - = T-~JA dyf(y X)XA(Y) 

1 
= f dy f ( y ) ~  fA dXXA(X+ y ) =  f dy f (y ) -  f dyf(y)~-~-~ YA(Y) 

(17) 
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since by (13), 

fAdx XA(x + Y) = { A n  (A - Y)I IAI Ya(Y) 

We have lya(y)l/IAI ~< 1 and limA+a~[yA(y)/[At] = 0 by Lemma l(al). The 
result follows by dominated convergence from (7) and 07)  and by the fact 
that p(1)(ax) = p~) is constant. 

(ii) If  p is Y invariant, we have 

1 fA dx:(~2P~'(x)=T~lf~dx/-" ~" a2v~''-(~)rx' (t8) 

Moreover, we can write the second term of (7) as 

1 IA~Lf~ dx fA~ dyf(x'y) 

- ~ dx dyf(x + aj, Y)XA~(Y) 
lr 

~-~ 2~(y) (19) 

since 

XA~(aj + y) = [Ak] -- 'TA~(Y)/[Ot 

The result follows again by dominated convergence from Lemma l(fll) and 
(7), (18), (19). [ ]  

Proof of Proposition 2. (i) If  the charge fluctuations are not normal, the 
relation (9) of Proposition 1 (i) holds true. Using (9) in (7), we get 

- 1 dxfA 

v \A  

f 1 = dyf(y) - ~  Ya(Y) 

Since (1/[gA[)yA(y) is uniformly bounded by (constant) [y{ and converges 
to y(y), [Lemma l(a2)], we obtain the result (11) by dominated convergence. 
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(ii) We know by Proposition l(ii) that (10) holds. Using (10) and the 
periodicity, we have 

Therefore (7) with (20) gives 

( ( Q A -  (QA)) 2) 

l o .fo f = T - ~  dx dyf (x  + as, y)x~\A(y) 

= ~ l ;  dx f dyf(x,Y) la~l SA(Y) 
The result follows from Lemma 1(/32) again by dominated convergence. 

(20) 

[] 

4. THE  C A N O N I C A L  S U M  RULES A N D  THE PROBABIL ITY  
D I S T R I B U T I O N  OF THE C H A R G E  

We have seen in Proposition 1 that the nonextensivity of the charge 
fluctuations is equivalent to the existence of certain constraints, i.e., Eqs. (9) 
and (10), that link the one-point and the two-point correlation functions. 
Using the definition (8), let us rewrite (9) and (10) explicitly in the form 

cr (2) 

f~.dxl~fflffl[lYlp(1)(~YlXl)df'~dx?ffp(ff)(qlXl;ffX)] -~'0 (22) 

Clearly Eqs. (21) and (22) are implied by the following relation between the 
one- and the two-point correlation functions: 

=1r + faq ap~)(ql, q) = 0 (23) 

Equation (23) is called the first canonical sum rule and is the first member of a 
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hierarchy of constraints that link the n-point to the (n + 1)-point correlation 
function 

~s q~,..., q~ 
, =  

+ f d q e [ p ( ~ + l ~ ( q l , . . . , q , q )  - pm(q)p(~)(ql  .... ,q,)] = 0, n = 1,2 
J (24) 

Equation (24) is called the nth canonical sum rule because it is identical to the 
relation that links the n and the n + 1 correlation functions in a finite-volume 
canonical ensemble (see Section 5 of Ref. 1 for a discussion of this point). It 
is important to note that the sum rules are not true in general for infinite 
systems of particles interacting via short-range forces [obviously (24) is false 
for a gas of two kinds of noninteracting particles]. However, the sum rule (24) 
is expected to hold for infinite systems of charged particles interacting with 
long-range forces (like the Coulomb force) and it is in fact an essential 
characteristic of such systems. Indeed it can be shown that as soon as the state 
has some mild clustering properties (s clustering), the sum rule (24) is a 
consequence of the BBGKY hierarchy which defines the equilibrium states 
(see Proposition 8 of Ref. 1). Moreover, it will be checked explicitly in the 
next section that the sum rule (24) is true in the case of the one-dimensional 
Coulomb gas. In this section we study the implications of the canonical sum 
rules for the properties of the probability distribution of the charge. We have 
immediately the following result. 

Proposition 3. Let p~be an R v- or Y-invariant state. If  the first sum 
rule holds and if 

supf fx21 < (25) 

then the charge fluctuations ((Qa - (Qa))  =) are of the order of the surface 
leA1. 

Proof .  Indeed, (23) implies (9) and (10), and thus the charge fluctuations 
are not normal by Proposition 1. Therefore the results of Proposition 2 are 
true. [ ]  

Corol la ry .  The charge fluctuations ( ( Q a -  <Qa>) 2) in R ~- or #-- 
invariant equilibrium states of Coulomb systems are of the order of the 
surface 18AI if the following clustering holds: for x2 fixed 

for xa fixed 

.=x=; = o(1/1 I v + ' )  
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uniformly in x2, and 

lira (]p~(crlx~; cr2x2; crax3)l dx~ = 0 
[x21~  ~o J 

Proof .  These clustering assumptions on the two- and three-point 
functions ensure by Proposition 8 of Ref. 1 that the first sum rule holds; thus 
Proposition 3 applies. �9 

All these clustering properties are true for a class of one-dimensional 
Coulomb systems (2,~ (these systems have exponential clustering). In this case, 
[~A[ = 1, and therefore the charge fluctuations converge to a finite limit. 

In order to investigate the higher moments of the probability distribution 
of the charge, it is useful to introduce the new set of correlation functions 
#~(q~,..., q,) giving the probability density for finding n particles, not 
necessarily different, at xz .... , x , .  ~5,6~ To abbreviate the notation, we shall 
denote simply by Q the set of variables (q~ .... , q,) with ]Q[ = n, and 

P(")(ql . . . . .  q.) = P(Q), o~)('qz ..... q . )  = or(Q),  etc. 

The correlations #")(q] ..... q.) are defined by 

~(Q) = ~ ,  [ I - I  A ( Q , ~ ) ] p ( Q  ~) (26) 
[_ ~" A 

~(Q) is a partition ~j-Qj~ = Q of the set Q = (q~,..., q~) into disjoint 
subsets Qj~, j = l, 2,..., k, 1 ~< k ~< n, and the sum in (26) runs on all such 
partitions. Here A(QT) is the product of Dirac functions identifying the 
arguments in Qj~, i.e., 

1, k =  1 
A(qz, . . . ,  qN) = ~ql,q2Sq2,q8 "'" 3q~_l,q ~, k >1 2 

with 

Q~ is the subset of Q obtained by selecting one argument in each QjZ~. 
Let f i ( q )  = fi(ax), r = 1 ..... n, be continuous functions with compact 

support in the variable x, and let 

Fr = ~ , f i ( q j ) ,  r = 1 ..... n (27) 
J 

be the corresponding local one-body observables. Then we have by the very 
definition of tS(Q) that the average in the state p of the product I~=zFr of 
one-body observables is given by 

F, = dq l . . ,  dq,  #"~(ql ..... q , )  f i (q , )  (28) 
r = l  



The Charge Fluctuations in Classical Coulomb Systems 4 4 7  

Together with the f(Q), we consider the corresponding truncated functions 
fr(Q) related to the t~(Q) in the usual way c6) 

f(Q) = ~ ~ f~,(Oje~) (29) 
�9 ~ ( 0 )  t 

It follows from (26) and (29) that the f~(Q) are related to the ordinary 
truncated correlation functions by the same formula as (26), (~) 

fiT(Q) = ~ ~-I A(QT)PT(Q ~) (30) 
,~(Q)  J 

f~)(q~ ..... q~) [resp. f(~)(ql .... , q~)] is a linear combination of p~>, 1 ~< k 4 n 
[resp. p(~)] with arguments in subsets of (q~ .... , q,). 

The next lemma gives four equivalent forms of the sum rules in terms of 
the different types of correlation functions. The proof  of Lemma 2 can be 
found in the Appendix. 

L e m m a  2. Assume that f]pr(Qq)] dq < ~ ,  [Q[ = 1 ..... n; then the 
following relations are equivalent: 

(i) (~rj)p(Q) + f dqcr[p(Qq)- p(q)p(Q)] = O, 

(ii) 0 

IQ] = 1 , . . . , n  

(31) 

Q] = 1 .... , n  

(32) 

I a ]  = 1 . . . . .  n 

(33) 

1, 
(iii) J dq cr[f(Qq) - p(q)fl(Q)] = o, 

(iv) (dqcrfl~,(Qq) = 0, IQ[ = 1 /,/ 

(34) 

We are now ready to study the probability distribution of the charge P~A(s), 
which is the probability (in the state p) that the total charge carried by the 
particles in A is equal to s. Let us introduce the normalized charge observable 
QA = (Qa - (QA))/I~AI 1/2. w e  know by Proposition 3 that if the first sum 
rule holds [with the integrability conditions (25)], then (0A 2) has a limit as 
A -+ R v. One can expect that the higher order moments (QA ~) of the normal- 
ized observable ~gA also converge when we have clustering and sum rules 
involving higher order correlation functions. The next two propositions show 
that this is indeed the case: in v = 2 or 3 space dimensions, the probability 
distribution PoA(s) for the normalized charge observable QA converges to the 
Gaussian, whereas for one-dimensional (neutral) systems, PoA converges to a 
discrete distribution. 



448 Ph. A. Martin and T. Yalcin 

P r o p o s i t i o n  4. Let p be an R "- or J-- invariant  state. Assume that the 
two-point truncated correlation functions have the integrability properties 
(25) and that the first sum rule holds (so that by Proposition 3, limAo~, 
(QA 2) d) and suppose d > 0 (d > 0). 

Then PoA(s) converges to (2~rd) -1/2 exp(-s2/2d) as A --> R" if further- 
more the higher order correlation functions have the properties listed below. 

(a) ~ 1  clustering for n >1 3: 

supJdq2. . . tdq,  lp(~"~(cqxl, q2,...,q,)[ < co, n =  3,4 .... 

(b) Moreover, in dimension v = 3, the second sum rule holds. 
In dimension v = 2: 

(el) sup oo. 
X l  d d 

(c2) The second and the third sum rules hold. 

ProoL We give the proof  for an R~-invariant state. The periodic state can 
be treated in exactly the same way. A = AA0 is a sequence of dilated regions 
(5). 

Let M~(QA) be the nth-order cumulant associated with the probability 
distribution PoA(S). 2 

We have 

M~(O^) = (OA> = 0 

lira M2(QA) = lim (QA2> = d > 0 
A--.Rv A-~Ev 

We shall show that limA~R~M~(QA) = 0 for n >/ 3. This will imply that 
the moments  (OAk), k = 1, 2,..., tend to those of the Gaussian, and by the 
theorem of convergence of moments,  that P~A(s) converges weakly to the 
Gaussian with covariance d. 

The nth-order cumulant M~(F) of any single-particle local observable 
F = ~jf(qj) can be expressed in terms of the correlation functions/~T(ql,-.., q~) 
by 

M,(F) = f dqz ... dq~ /~(qz,..., q~)f(q~) ... f(q,) 

Since M,(QA) = (1/I~AI"I2)M~(QA) for n >/ 2 we have, with (1), 

M~(O_.A)-- ' ~1~'2~1 JA f dqx ""d^ f dq~ a~ ... a~p(~'(ql .... ,q~) (35) 

2 The cumulants are defined by the formal expansion 

ln(exp(aQA)) = ~=o ~.. M~(~)^) 



The Charge Fluctuations in Classical Coulomb Systems 449 

and thus 

I A' (sup ~ ) ~ N s u p [  dq2 ..' dq,~ t t~ (q : ,  q2 ..... q~)[ 
IM (G)I <. o,. 

(36) 

It  follows f rom the linear relation between the Pr and the ?r and the structure 
of  formula  (30) that  the ~ :  clustering implies 

s u p f d q 2  .-. dqn [t3~"~(q:, q2 .... , q~)[ < 
ql d 

Since for  a sequence of  dilated regions hAo 

[AI/IaAI ~/~ = a ~ +(~/2>(:- ~'lAol/laAoI "'~ (37) 

we get f rom (36), (37), and the S~ x clustering (a) 

lira M=(Oa) = 0 i f n  > 3 when v = 3 
A~Rv 

lim M~(QA) = 0 i f n  > 4 when v = 2 
A ~ R v  

Thus it remains to examine M3(QA) when v = 3 and Ms(QA) and M4(QA) 
when v = 2. 

the form (34), 

q2, q3) [ 

1 f~ dq:fAdq~f dq3a:~(~>~ ~ t = 2 o,-~ ~q:, q2, qs) 
v\ A 

with 

g(x:, x2) = ~ f dq3 [~cr2a3~'(,~:x: ; a2x2; qa)[ (39) 
~:o2 

The ~ :  clustering assumption (a) for  n = 3 implies that  

sup f dx2 [g(xz, x2)] < 

Therefore  we can proceed as in the p roo f  of  Proposi t ion 2 and apply Lemma 
1(~:) to obtain 

lira ~ dx: 2 g(x:, x2) -= lira dy g(y) ~ 7A(Y) = 0 
A~R~ IAI ~\A A~R~ 

(40) 

Case v = 3. U s i n g  the s econd  s u m  rule in 
fdq: ~ : t ~  ~ (ql ,  q2, q3) = 0, we  can write 

1 
[ M 3 ( Q A ) I -  le:13,21 f A dq:fA dq2fA dq3a:a2a3~(rm(ql, 
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In  view of  the fact that  ]A[/IOA[ a/2 = ]Aol/10AoI 3/2 - constant  when v = 3, 
we conclude f rom (38) and (40) that  Iima~R,M3(QA) = 0. 

Case v -- 2. We majorize Ma(~)A) as in (38) with the same definition (39) 
for g(xt, x2). N o w  we have f rom assumption (cl) that  

sup f g(x. x2)lx l < o0 

and therefore we find by Lemma 1(~2) that  

1. fR dxl fA dx2 g(x~, x 2 ) =  f d y g ( y ) ~  7A(Y) 

converges as A - - > R L  F r o m  this and (38) we have that  M a ( ~ ) a ) =  
O(1/ I~Xl 1`2) ---> 0 as A --> RL 

For  M4(QA) we use the third sum rule, fdq~ azp~)(q~, q2, qs, q~) = O, to 
write 

1 
[M4(0A)I : - ~  fR~xa dql fA dq2 fA dq8 fA dq4 ala2aaa4fi~)(ql, q2, q3, q4) 

with 

1 
<~ -~-~2 fR~\A dxl f A dx2 h(xl, x2) 

t" 
h(x1, x2) = cL~a,,J dqa J dq4 I(xla2aaa4/~(T4)(alXl ; or2\2; qa, q0[ 

The Lf 1 clustering for n = 4 and Lemma 1(~1) ensure again that  

lim 1 fR &l~Adx2h(xl, x2)=O 
A~Rv ~ V\A 

F r o m  this and the fact that  [A]/]~A[ 2 = IAo]/l~Ao] 2 = constant  when v = 2 
we get limA~RvM4(~)A) = 0. �9 

P r o p o s i t i o n  5. Let v = 1 (i.e., [~A] = 1 and QA = QA - ( Q a ) )  and 
o be an R-invariant  state. I f  

sup dx2 f dx3 "" f dx" [x l lp ",(alx ; < ~ n >~ 2 

and all sum rules hold, then Po~(s) converges weakly to a finite distribution 
P(s) as A - + R .  

Proof. Using the nth sum rule fdql azf~")(q~ ..... q,) = O, we have for 
n > ~ 2 ,  

M,(QA) = -f.\  dq~ f^ dq~'" f^ dq. ~ ' "  __ __ ..... q,) 

=-f \dxfdyKs (41) 
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with 

K(a~)(x'Y)= ~ fa dq....s dq,~za2... ~,~p~(crlx;%y;qa,...,q,~) (42) 

We can write 

= - dy •a(Y)xR\A(x)K2 (X, y) 

f f "x'K(~(x, x) = - dx dyxA(x+y)xR~A( ) 6 ,  Y +  

f f  "x'K~ = - dy dXxA(X+y)xR\A( ) A- , : , ,Y)  (43) 

We have made the change of  integration variables y - +  y + x and used 
translation invariance. 

The exchange of  the x and y integrals in (43) is allowed, since with (42) 

f "x'K (~ (0, dx xa(x + Y)XR\a( ) a-~, Y) 

lyl(sup~) ~ ~ . . . . .  q.)l (44) ~< 
ff GI~2 �9 

which is an integrable funct ion o f  y by assumption.  
Setting A = [ -  a, a] and after the change of  variable x -+  - x - a, we 

have for y >/ 0 as a consequence o f  the 5e ~ clustering 

lim [ dx xA(x + y)XR\A(x)K~(O, Y) 
A"*R, J 

;o = lim dx K, (~ 0 ~-.~o tx,2~+xJ( , Y) 

f o~ dX (~ 0 = K ~ ,  ~o~( , y )  (45) 

Similarly we obtain for y ~< 0 (x --+ - x  + a) f s 
lira dx xa(x + y)xR\a(x)K(a~-~(O, Y) = dx K~2= ~(0, y) (46) 

A ~ , g  

F r o m  (43)-(46) we conclude by dominated convergence that  all cumulants  
M~((~A) have a limit as A --> R. So do all moments  of  the charge distribution, 
and therefore PoA(s) converges weakly to a limit distribution P(s). a 

Remark 1. In Proposi t ions 4 and 5 we have not  made any assumption on 
the behavior  of  the average charge (QA)  as A ~  RL I f  l i m a ~ r  
[aA] ~/~) converges as A - +  RL we get immediately the following corol lary:  

C o r o l l a r y  1. Assume that  lima~r = c < oo. 
(i) When v = 2, 3, under  the assumptions of  Proposi t ion 4, 

�9 < O a )  hm P ~ ,  = 

a We assume here that the set of limiting moments defines a unique probability distribution�9 
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(ii) When v = 1, under the assumptions of Proposition 5, limA~a, 
P ( Q A ,  s )  exists. 

R e m a r k  2. I t  is interesting to notice that in dimension u = 3 (resp. u = 2) 
one uses only the first two sum rules (resp. the first three sum rules) to obtain 
the convergences of the probability distribution, whereas for v = 1 all sum 
rules are needed. One gets a slightly stronger result if one knows that the state 
is invariant under charge conjugation. 

A state is invariant under charge conjugation if both cr and - e belong to 
E and 

p~"~ - ( x l ,  , x . )  = p % l  ~ . (x l  . . . .  , x O  
~ l . . . u~  ~ . . . . . . . .  

Coro l la ry  2. I f  the state is invariant under charge conjugation, assump- 
tions (b) and (cl) are not needed in Proposition 4. 

P r o o f .  Indeed (b) (for v = 3) and (cl) (for u = 2) are used to show that 
limA-~R'M3(~)A) = 0. But if the state is invariant under charge conjugation, 

(QA ~) = 0 and M~(QA) = 0 for n odd. �9 

We see that in dimension v = 3 and for a state invariant under charge con- 
jugation, we can conclude that the asymptotic charge distribution is Gaussian 
when we know that we have the ~o~ clustering (a) and that the normalized 
second-order moment  converges to a nonzero limit (i.e., the situation of 
Proposition 2 with d > 0), 

R e m a r k  3. One-dimensional equilibrium Coulomb systems are known to 
be neutral and to have exponential clustering. (2'4~ Therefore Proposition 5 
and Corollary l(ii) (with c = 0) apply and we conclude that such systems 
have a limiting charge distribution. Since the range of values of QA is discrete, 
the limiting distribution is also discrete. An explicit example of such a 
distribution will be given in the next section. Proposition 4 and Corollary l(i) 
(with c = 0) will apply to equilibrium states of  Coulomb systems in dimen- 
sions v = 2 and 3 as soon as screening occurs, i.e., if all clustering properties 
needed for the validity of  Proposition 4 and of the sum rules (Proposition 8 
of  Ref. 1) hold true. 

To conclude this section, we discuss the correlations of the charge with 
the local observables. Since the charge QA is a macroscopic observable, we 
expect that the probability distribution of QA is decorrelated from that of 
local observables as A ---> R v. 

Proposi t ion 6. Assume that fl~<~+~>r,, jle~ ~1 ..... q ,q ) ]  dq < o% r = 1 .... , n .  

The first n sum rules hold if and only if 

lim ((F~ ... F~QA) - (F~ ... F ~ ) ( Q A ) )  = 0 
A .-* Zq v 

for all local observables F~ of the form (27) and r = 1, 2 ..... n. 
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,Proof. We have 

0 = lira (<Fz "-" F~QA) - (F~ ... F ~ ) ( Q A ) )  
A-*Rv 

= l i ra  fdq:t  ... d q , . f ~ ( q l ) ' " f , ( q r )  
A~I~ d 

x f^ dq cr[~(qz .... , q~q) - t~(q~,..., q,)p(q)] 

= _( dql ... a q r f l ( q l )  . . . f .(q,.)  

x f dq ~[t~(q~,..., qrq) - ~(ql  ... . .  qr)p(q)J (47) 

because t~(q~ ..... q r q ) -  fi(qz,..., q,')P(q) is integrable by the 5e~-clustering 
assumption.  Since (47) is true for  all choices of  thefj(qj) ,  the sum rules (33) 
hold for r = 1,.. . ,n. [ ]  

For  the higher moments  of  the charge distribution we have the following: 

Proposi t ion 7. Assume that  f]p~"~(q~, q2 .... .  q,~)l dq~ ... dq~ < ~ ,  n >1 2, 

and let Fj, j = 1 .... , r, be local observables;  then: 
(i) The following holds:  

<F~ ... F~Qa" ) - {F1 "" Fr){QA '~) = O (  sup [(QAk)[~ (48) 
% 

\ l ~ < / r  ! 

(ii) The sum rules hold if and only if 

{F,..'F, Qa")-<F,'"F~)CQA") =o ( sup I{QAk)I), 
\ l ~ < n - 1  

r =  1 ,2 , . . . ,n  

(49) 

Proof .  We have 

<F1 ".. F, QA~) - <F1 "" F,)(QA") 

= f dql "" dqr f l ( qO  "" fr(q,)  f A d ~ l  "" f A d ~ .  ~l "" ~. 

• [P(q~,..., q ,  qz,..., ~,) - t~(ql .... , q,)t~(~ ..... ~,)] (50) 

Abbreviat ing Q = qz .... , q~ and (~ = ~71,..., q,, it follows f rom the defini- 
t ion of  the t runcated functions that  the integrand of  (50) can be written as 

n = l  

 (Q0) - = ( 5 O  

Ir][ = e  

where', 
R ( Q Q I U )  = R(q~ .... , q,, qh .... .  7~j,_~), qh e U 

is a product  o f  t runcated functions t~r where the arguments qh, s = 1 ..... 
n - k, appear  always in conjunct ion with at  least one argument  q~ ~ Q. 
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Therefore the integrals 

f dql ".. dqrfl(ql) ""fr(qr) 

• fAdcT, l...s (52) 
are bounded uniformly with respect to A by the ~~ From this, 
formula (51), and the fact that 

..... uk) = (QA k ) 

we get the estimate (48). 
If in addition the sum rules (34) hold, the integral (52) tends to zero as 

A ---> R ~ and we get (49). 
Conversely, if (49) is true, the particular case n = 1 gives the sum rules 

by Proposition 6. �9 

From Proposition 7, we obtain easily that in any dimension, the prob- 
ability distribution for the charge decorrelates from that of local observables 
as A --+ RL 

Coro l l a ry .  Let P(Fz, sl;.. .;  F ,  &; QA/I~A] ~]2, s) be the joint prob- 
ability distribution for the local one-body observables Fz,..., F~ and the 
normalized charge QA/] ~A[ 1]2. Under the assumptions of Propositions 4 and 
5 and if limA~R~((QA)/I~A[ ~/2) exists, then 

lira P(F~, s~;...; F ,  s~; QA/I~A[ ~]z, s) 
A ~ B v  

= P(FI, s~;...; F ,  sO lim P(O~/laAI ~, s) 
A ~ R  v 

Proof. We know that (1/I~AI~/2)(QA~), n = 1, 2 ..... converges (Corol- 
lary 1 of Propositions 4 and 5). Therefore when v = 3 or 2, 

lira (1/laA[ "'=) (QA~) = 0, 
A-+Eo 

1 ~< k <~ n - 1, and the result follows from Proposition 7(i). When v = 1, 
(QA ~) remains bounded as A ~ R ~ and the result follows from Proposition 
7(ii). �9 

5. T H E  O N E - D I M E N S I O N A L  C O U L O M B  G A S  

We illustrate the general theory by a solvable model, the one-dimensional 
Coulomb gas. We establish the convergence of the probability distribution of 
the charge by a direct computation and show the validity of the sum rules. 
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A general expression for the charge probability distribution P(Qa, s) can be 
given in terms of the family of density distributions of particles/~A"(qz ..... q,) 

f f 
~,~(ql ..... q") = ~ . , = 0 - - J A _  a~ l . - . j~  aq~o~"+"'(ql ..... q,; q , . .  ., q,) 

(53) 

tz,~(ql " "  qn) is the probability density for finding exactly n particles in A 
located at xl, �9 �9 �9 xn with charges ~rl, . . . ,  a~. (5) Then one has 

P(Q, ,  s ) =  n=o ~ [ar~..a, 8Y~=1~i's oA f dXl "" fA dxn [s  . . . . .  o'nXn)] 

(54) 

We calculate P(Q, ,  s) for a two-component, one-dimensional Coulomb gas 
of particles of charge _+ 1, using the method of functional integration intro- 
duced in Ref. 2, which we summarize briefly here (for details see Ref. 2). 

The Hamiltonian of the neutral Coulomb gas of n particles is 

H(ql,.. . ,qn) = - e  2 ~ a~crzlxk - x~[, ay = +1, ~ aj = 0 
k < /  ] = 1  

= e 2 ~ aka, min(xk, x3 (55) 
k,l 

The main observation is that H(q~ ..... q,) is the covariance of the Wiener 
integral. More precisely, one considers the space of Brownian paths ~o(x) and 
the family of joint probability distributions R(qJlxa ..... q~x,) for paths 
starting in ~Oo at x = xo = 0 to be found in dq~l ... d~o, around ~ol ..... ~o~ at 
x~ .... , x ,  averaged on initial values ~oo, % ~ [-~r, 7r]: 

R(q~z xl .... , q~,x,) = ~ dcpo ~ R(cp~ - q~k-1, xk - x~_ 1) (56) 
g k = l  

R(% x) - (4rrfle2x)ll2 exp 

Then the Boltzmann factor is represented as 

exp[-f lH(q~ ..... q~)] = ( e x p [ i ~ ( x l ) ]  ..- exp[ie~0(x~)]) (57) 

where (.--) denotes expectations with respect to the probability measure 
defined by (56). All statistical mechanical quantities can be expressed as 

functional integrals of the form (exp[foF(~0(y), y)  dy]), which can be evalu- 

ated by the Wiener-Kac formula 

( [fo ]) ' ;  exp F(9(y) ,  y)  dy = ~ -~ dgo ~o dq~ Ux(% %) (58) 
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Ux(% ~Oo) is the kernel of the operator U. solution of 

d fx /dx  = F(x)Ux, Ux=o = I 

where F(x) is the differential operator 

V(x) = [3e 2 dZ/cl9 = + F(% x) (59) 

acting in ~2(R, d~o). 
In the application, F(% x) will be periodic of period 2~r, and we can 

replace Ux(% %) in (58) by the periodic kernel 

0~(q~, ~Oo) = ~ U~(~o + 2~rn, cp0 ) (60) 
~ = - o a  

solution of 

d(J,:/dx = f'(x)Ox (61) 

where ~(x) is now the differential operator (59) acting on s162 ~r], dg) 
with periodic boundary conditions. With (60) we get finally 

( if; ]) l;  ; exp F(~0(y), y) dy = ~ -= d~o -= d~ 0.(% %) (62) 

From (57) one finds easily that the grand canonical partition function Z(L) 
for the two-component Coulomb gas in a finite interval [0, L] is 

oo Z n ~ L f 5  
Z ( L ) =  .~oh-~.lj ~ dxl'".]o dx. ~ exp[-f iH(ql  ..... q.)] 

0"1"" "~n 

(If :  1) = exp 2z cos ~o(y) dy (63) 

and the corresponding finite-volume correlation functions are given by 

z-( 
pL(ql ..... q~) = Z(L) exp[i~l~o(xl)] --. exp[i~o(x~)l 

[fo ]) x exp 2z cos ~(y) dy (64) 

From (64) and (53) we get the density distributions 

1 z '~ ( 
t*•,L(ql ..... q'~) = n! Z(L) exp[ia~cp(xl)] ... exp[i%~o(x~)] 

x e x p [ f :  F A ( 9 ( y ) , y ) d y ] )  (65) 

with 

2z cos % y ~ A 
FA(% Y) = 0, y E A  

A ~ [O,L] 
(66) 
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Finally, writing 

in (54), we have from (65) that the characteristic function GA,L(c 0 of the charge 
probability distribution (in the finite system) is given by the following simple 
functional integral: 

1 < [for- ] >  GA,L(~) = ~ exp FA"@(y), y )  dy (67) 

with 

2z cos % y r A 
FA~(~~ Y) = 2z cos(~o + ~), y ~ A 

GA,z(a) can now be computed with the help of  (62), i.e., 

Q ~ ( ~ )  = ~ _~ dvo _~ d~o 0~(% ~o) ~ _~ d~oo -~ a~ 0~(% ~o) 

with 

and 

(68) 

dOx ~, ( 0~ x r A d 2 
= .~ f~ '%  P,~ = fie 2 + 2z cos(cp + c 0 (70) 

Txx ~f'~0x~, x E A 

When A = [a, b] is some interval contained in [0, L] the solution of (70) is 

0z ~ = exp[P(L - b)] exp[P.(b - a)] exp(Pa) (71) 

One knows that P defined in (69) has a maximal nondegenerate eigenvalue ~'o 
with eigenvector ]Y> (actually Y(q~) ~ 2 ( [ - r r ,  ~r], d~0) is the fundamental 
solution of the Mathieu differential equation). Hence as L -+ ~ ,  Oz behaves as 

Oz = e'o' I Y ) (  YI + o(er~ (72) 

With this we obtain from (68) and (71) GA.r.(~) in the thermodynamic limit 
(letting L - b ---> o% a ~ 0% b - a fixed) 

GA(~) = lim GA,L(a) = {exp[-7o(b - a)]}(Y]exp[P~(b - a)]! Y) 
L ~ o O  

(73) 

and the charge probability distribution in the region A of the infinite system 
is 

P(QA, s) = ~ d~ GA(~)e - ~  (74) 

d R  d 2 
= POx, P =/3eZ ~_-- 2 + 2z cos % 0x = exp(Px) (69) 

dx ue? 
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Propos i t ion  8. In an equilibrium state of the one-dimensional, two- 
component Coulomb gas (as described above); we have the following: 

(i) The charge probability distribution converges: 

lim P(QA,  s)  P ( s )  = = cn+~e~2 2, s integer (75) 

(the c~ are the Fourier coefficients of the fundamental solution of the Mathieu 
equation). 

(ii) The canonical sum rules hold true. 

Proof.  (i) 1) and i~ [defined by (69) and (70)] are unitarily equivalent by 
the translation operator exp(ip~), p = -id/dcp. Therefore we can write 
GA(a), (73), in the form 

GA(~) = e-~0 <b -~)< Y~] Ub-a[ IT,) (76) 

where Y~@) = Y(q~ - ~) is the translate of the fundamental eigenfunction 
Y(q~). With this and (72) we have 

lim GA(~) = [( Y~] y)lz  (77) 
A= b-a--~ oo 

The pointwise convergence of the characteristic function implies the con- 
vergence of the probability distribution 

lim P ( Q A ,  s )  = e-'"~l( Y=l r ) l  2 dc~ (78) 
&--*co ~ 

We obtain (75) from (78) and the Fourier series Y(~0) = ( 1 / ~ ) ~ = _  ooc,e ~ 
of Y(~). 

(ii) We show that the joint probability for the charge and local observ- 
ables factorizes as A --+ R. Then the validity of the sum rules follows from 
Proposition 6. Let F~ = ~jf~(qj) ,  u = 1 ..... r, be local observables with 
f~(~, x)  continuous functions of compact support. The joint probability 
distribution for F~,..., F~ and the charge QA is given by the generalization of 
(54), 

P(F~, s~ ..... F~, s~; QA, s )  

x 82,~=~,~/~(,~x~ ..... ,~x~) 

Let [a~, b~] be an interval containing the union of all supports of the f~(e, x) 
and A = [a, b] ~ [a~, bl]. The calculation ofP(F1, sx ..... F~, &; QA, s )canbe  
carried out along the same lines as that of P(Qa, s) and we leave it to the 
reader. 
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];he corresponding characteristic 
limit) is found to be 

GA(~,..., at, a) = e-~o(b-a)( y~[ Oh-v1 W~ ..... (bl, al)Oa 1-.1 Y~) 

W(x,  y )  is the solution of 

dxd W~,..,,(x, y) = r~,l...~,(x)W,~...,~,(x, y) ,  W,~I ..... (x, y )  ~=u = I 

F~  ..... (x) = Be 2 ~ + z expi  ~o + ~ f ~ ( + l ,  x) 
a ~ o  u = i 

From (72) again, we find that GA(cc~ ,..., ~r, c0 factorizes as A ~ oo 

lim GA(~,. . . ,  ~r, ~) = I( Y~I Y)lZG(cq ,..., ~ )  
b - -  a - - .  r~ 

where 

function (after the thermodynamic 

(79) 

G(al ,..., at) = e -~o(bl-al)( Y[ W~...~,(bl, al)l Y )  

is the characteristic function of the joint probability ofF1 ..... F~ and [( Y~I y)]z 
is the characteristic function (77) of the limiting charge distribution. We de- 
duce also by an analysis of the structure of (79) that GA(aI .... , at, (~) is differen- 
tiable and that its derivatives with respect to al .... , ar and a converge to the 
corresponding factorized quantities, which is equivalent to the asymptotic 
factorization of the moments. Then the sum rules follow from Proposition 
6. [ ]  

Remarks.  1. The result of Proposition 8 could be deduced from the fact 
that the set of correlation functions of the one-dimensional Coulomb gas 
satisfies the (generalized) BBGKY hierarchy (7> and that the clustering is 
exponentially fast. Then the validity of the sum rules follows from Proposition 
8 of Ref. 1 and the convergence of the probability distribution of the charge 
from Proposition 5 of this paper. 

2. We have the same results for the class of states of the one-dimensional 
Coulomb gas with different boundary charges constructed in Ref. 4 (0-states). 
This can be shown directly as in Proposition 8, or deduced from the equilib- 
rium equations and the exponential clustering as mentioned in the preceding 
remark. 

3. It is easy to check that the fluctuations ((NA -- (NA)) 2) of the total 
particle number are extensive, with NA = NA + + NA-, NA + and NA- being 
the numbers of particles of charge plus and minus in A. The fluctuations of 
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NA + and NA- are also extensive since those of Qa = NA + - NA- are O(1). 
Therefore in a large interval A the fluctuations of NA + and NA- are large, but 
strongly correlated to produce finite fluctuations for QA. 

A P P E N D I X  

Proof of Lemma 1 

(cq) Clearly IA n (R~\A - y)[ < IAl~l[, where A lul is the set of points 
that are within a distance less than or equal to l yl from the boundary of 
IOAI. Thus 

1 ,. IA'~ I 
lim ~ ~'A(Y) ~< nm ~ = 0 

by the van Hove property. 
(~:) For  any IAI with [AI /> IA~I we have from (4) 

I A I -  Ia~l < lal[a]  < Ial + IA~I 

Now I(A n (Rv\A - y))a I < 21Aal, and therefore 

1 rA~(y) + 21Aal 

I~I[A~ ]'TA~(y) ~< iA~l _ IA~I 

tends to zero as IA~I -~ ~ as in (a:). 
(a:) We have the scaling property ~A(Ay) = AvyA(y) or equivalently 

~'aa(Y) = A~TA(A-:Y). Thus, setting ~ = (1/e)]y], y fixed, and A = AAo, 
]0A 1 = A~-II~A01, we get 

A~Ao(A - :y) 
lim CA(Y) = lira 

A-*R~ ~-~oo 1OAol 

lyl lim• ) 9 -  Y (A1) 

One has (see Fig. 1) 

( IP" dsl + o(~) (A2) ~Ao(e.9) E 
L t  

cq(Ao- e~)nAo 

With (A2) and by the symmetry 2 ~ -)~, we obtain 

~ o  1 yA(e) ) = ,~o ,~e 1 fa lira 1 [~,A(Ef) + ~'A(--e)))] = ~ l~'dsl (A3) 
A o 

(A3) and (A1) give the result. Moreover, (A2) shows that ~,no(e))) ~< ~lDAol + 
o(~) and thus (1/lOAI)~^(y) ~< lyl + o(1) uniformly with respect to A. 
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(fi2) For the sequence of regions Ak defined in (6) we obtain by counting 
the number of cells (see Fig. 2) 

~7~(Y) = ]f2l{[[Yll](2k) ~-1 + "  + [[Y~[](Zk) v-1 + O(k~-2)} (A4) 

and by dilatation 

I~Akl = k~-ll~fi I = (2k)~-~]~3f2] (m5) 

(A4) and (A5) give the result (16) and show that (1/J~Ak[)~a~(y) is bounded 
by constant ly  ] uniformly with respect to Ak. �9 

Proof of Lemma 2. The equivalence between (i) and (ii) is proved in the 
Appendix of Ref. 1. The same proof, involving only the relation between 
the correlations and the truncated correlation functions, also establishes the 
equivalence between (iii) and (iv). We will obtain a proof  of the lemma if we 
show that (ii) and (iv) are equivalent. We can write (30) in the form 

t3r(Qq) = ~ I ~  A(Qs~)PT(Q~q) + ~ I-I A(QJ~)Pr[(Qq) ~] (A6) 
.~(Q) t J(Qq) Y 

where in the first sum ~ runs on all partitions of Q and in the sccond sum 

// Y2e2 ," l ~ r  .,i 

," ." . ' / h  K 

Fig. 2 
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runs on all partitions of Qq such that q occurs always in conjunction with 
some other argument q~ ~ Q. We get from (A6) 

f dq cr~r(Qq) = ~ ~-~ A(Qj~)f dq crpr(Q~q) 
.~(Q) J 

+ _~ f dq a ]-I A(QJ~)PT[(Qq)Y] (A7) 
~(Qq)  ] 

In each term of the second sum of (A7), q appears certainly in a Dirac func- 
tion 3q.q~ with some q~ ~ Q, and therefore the integral can be performed 
immediately. 

Since the same partition QI~,..., Qj2 ..... Q ~  of Q arises from the k 

partitions ~ of Qq of the form QI~,..., QJq,..., Qk ~ where q occurs in con- 
junction successively with Qj~, j = 1 .... , k, we get 

f dqafr(Qq)= ~)~A(Q,~) [ f  dqapr(Q~q)+ (~  a J )  pr(Q~)] 

J = dq apT(Qq) + crj oT(Q) 

+ ~Q)~zX(Q~I)[f dqapT,(Q~'iq)+ (~a~l)p~,(Q~l)] 

(A8) 

~ y j ~  is the total charge of the particles with coordinates belonging to Q~ 
and the sum in the second term of (A8) runs on all partitions ~1 of Q into 
at most n - 1 subsets. Since t Q~ll ~< n - 1, it is clear from (A8) that (ii) 
implies (iv). Conversely, if (ii) holds for [QI ~< n - 1, then (iv) implies (ii) for 
I Q I = n. The equivalence of (ii) and (iv) being trivially seen in the case n = 1, 
the proof of the lemma is completed. �9 
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